Improved representation of diurnal variability of rainfall retrieved from the Tropical Rainfall Measurement Mission Microwave Imager adjusted Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) system
نویسندگان
چکیده
[1] Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) is a satellite infrared-based algorithm that produces global estimates of rainfall at resolutions of 0.25 0.25 and a half-hour. In this study the model parameters of PERSIANN are routinely adjusted using coincident rainfall derived from the Tropical Rainfall Measurement Mission Microwave Imager (TMI). The impact of such an adjustment on capturing the diurnal variability of rainfall is examined for the Boreal summer of 2002. General evaluations of the PERSIANN rainfall estimates with/without TMI adjustment were conducted using U.S. daily gauge rainfall and nationwide radar network (weather surveillance radar) 1988 Doppler data. The diurnal variability of PERSIANN rainfall estimates with TMI adjustment is improved over those without TMI adjustment. In particular, the amounts of afternoon and morning maximums in rainfall diurnal cycles improved by 14.9% and 26%, respectively, and the original 2–3 hours of time lag in the phase of diurnal cycles improved by 1–2 hours. In addition, the rainfall estimate with TMI adjustment has higher correlation (0.75 versus 0.63) and reduced bias (+8% versus 11%) at monthly 0.25 0.25 resolution than that without TMI adjustment and consistently shows higher correlation (0.62 versus 0.51) and lower bias (+22% versus 30%) at daily 0.25 0.25 scale. This study provides evidence that the TMI, which measures instantaneous rain rates from the TRMM platform flying on a non-Sun-synchronous orbit, enables PERSIANN to capture more realistic diurnal variations of rainfall. This study also reveals the limitation of current satellite rainfall estimation techniques in retrieving the rainfall diurnal features and suggests that further investigation of precipitation generation in different periods of cloud life cycles might help resolve this limitation.
منابع مشابه
Diurnal Variability of Tropical Rainfall Retrieved from Combined GOES and TRMM Satellite Information
Recent progress in satellite remote-sensing techniques for precipitation estimation, along with more accurate tropical rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) instruments, have made it possible to monitor tropical rainfall diurnal patterns and their intensities from satellite information. One year (August 1998...
متن کاملPerformance of High Resolution Satellite Rainfall Products over Data Scarce Parts of Eastern Ethiopia
Accurate estimation of rainfall in mountainous areas is necessary for various water resource-related applications. Though rain gauges accurately measure rainfall, they are rarely found in mountainous regions and satellite rainfall data can be used as an alternative source over these regions. This study evaluated the performance of three high-resolution satellite rainfall products, the Tropical ...
متن کاملEvaluation of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge Network
Robust validation of the space–time structure of remotely sensed precipitation estimates is critical to improving their quality and confident application in water cycle–related research. In this work, the performance of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) precipitation product is evaluated agai...
متن کاملThe diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain
This study examines the spatial and temporal variability in the diurnal cycle of clouds and precipitation tied to topography within the North American Monsoon Experiment (NAME) tier-I domain during the 2004 NAME enhanced observing period (EOP, July–August), with a focus on the implications for highresolution precipitation estimation within the core of the monsoon. Ground-based precipitation ret...
متن کاملRainfall Retrieval Algorithm over Indian Land and Oceanic Regions Using Trmm Data
The Tropical Rainfall Measuring Mission (TRMM) satellite is a joint US-Japanese mission to explore tropical rainfall and its effects on the earth's energy budget, general circulation, and climate. In the present study, a method has been developed here for rainfall retrieval over Indian land and oceanic regions from remotely sensed microwave (MW) brightness temperature (BT) data obtained from th...
متن کامل